Hemanote

Consultants

11 CURTIS ROAD, CHESTER HILL

PROPOSED CHANGE OF USE TO A COMMUNITY FACILITY

TRAFFIC & PARKING IMPACT ASSESSMENT

APRIL 2025

HEMANOTE CONSULTANTS PTY LTD TRAFFIC ENGINEERING & DESIGN CONSULTANTS PO BOX 743, MOOREBANK NSW 1875 CONTACT: 0414 251 845 EMAIL: projects@hemanote.com.au

Hemanote

Consultants

TRAFFIC & PARKING IMPACT ASSESSMENT 11 CURTIS ROAD, CHESTER HILL PROPOSED COMMUNITY FACILITY DATE: 30 APRIL 2025

DISCLAIMER

All information and material contained in this report is the property of Hemanote Consultants. It is solely based on the instructions of our client and the findings of Hemanote Consultants and is not intended for use or should not be relied upon by any third party. No responsibility is undertaken by Hemanote Consultants to any third party.

Any use, copying, reproduction or retransmission of the information and material in this report, in whole or in part, is not permitted without the written consent of Hemanote Consultants.

Traffic & Parking Assessment – 11 Curtis Road, Chester Hill

Doc. Revision	Prepared by	Reviewed by	Issued by	Issue date
Draft 1 (internally)	J. Mikhail	R. Selim	J. Mikhail	10 Feb 2025
Draft 2 (internally)	S. Payet	R. Selim	S. Payet	27 Feb 2025
Draft 3 (internally)	S. Payet	R. Selim	S. Payet	28 Feb 2025
Final report (to client)	S. Payet	R. Selim	R. Selim	03 March 2025
Updated Final report (to client)	S. Payet	R. Selim	R. Selim	30 April 2025

Table of Contents

1	INTF	RODUCTION
2	EXIS	STING SITE DESCRIPTION
3	EXIS	TING TRAFFIC CONDITIONS
	3.1	Road Network and Classification7
	3.2	Road Description and Traffic Control7
	3.3	Current Traffic Flows9
	3.4	Existing Transportation Services
4	PRO	POSED DEVELOPMENT14
	4.1	Description of the proposal14
	4.2	Vehicular Access
	4.3	On-site Parking Provision17
	4.4	On-site Parking Layout and Circulation
	4.5	Waste Collection & Deliveries
5	ON-	STREET PARKING PROVISION19
	5.1	Existing Parking Controls19
	5.2	Impacts of Proposed Development on Parking19
6	EXT	ERNAL TRAFFIC IMPACT20
	6.1	Estimated Future Traffic Generation20
	6.2	Projected Intersection Performance (post-development)
7	MAN	IAGEMENT OF TRAFFIC & PARKING DURING PEAK USE & SPECIAL EVENTS28
8	CON	ICLUSION
	Append	lix 'A' – Proposed Development Plans
	Append	lix 'B' – Traffic Volume Surveys
	Append	lix 'C' – SIDRA Intersection Analysis

1 INTRODUCTION

This report has been prepared by Hemanote Consultants to assess the traffic and parking implications of the proposed change of use of the existing building located at **11 Curtis Road, Chester Hill** to a community facility.

This report is to be read in conjunction with the architectural plans prepared by AKT Engineering and Consulting (reduced copy of the plans – Issue 'A' and dated 02/12/2024 - is attached in *Appendix 'A'* of this report) and submitted to Canterbury-Bankstown Council as part of a Development Application.

This report is set as follows:

- Section 2: Description of the existing site location and its use;
- Section 3: Description of existing traffic conditions near the subject site;
- Section 4: Description of the proposal, vehicular access, on-site parking provision, layout and circulation;
- Section 5: Assessment of impacts on parking;
- Section 6: Assessment of impacts on traffic in the vicinity of the subject site;
- Section 7: Management of traffic & parking during peak use and special events; and
- Section 8: Outlines conclusions.

2 EXISTING SITE DESCRIPTION

> Site Location

The subject site is located on the southern side of Curtis Road at property No. 11 (legally known as Lot A of DP410761), within the suburb of Chester Hill. The site has a frontage of approximately 20 metres to Curtis Road from the north. Refer to Figure 1 for a site locality map.

Figure 1: Site Locality Map

30 April 2025

Page 6

> Existing Site & Surrounding Land Use

The subject site has an area of 8,642.1m² and is currently occupied by a bowling club. It is located in a mainly residential area, characterised by residential developments, as well as nearby commercial sites.

The site is also located approximately 1.5 km from Chester Hill Railway Station, 1.7 km from Leightonfield Hill Railway Station and 2.5 km from Sefton Railway Station.

Photo 1: Existing site frontage to Curtis Road

Consultants

3 EXISTING TRAFFIC CONDITIONS

3.1 Road Network and Classification

Curtis Road is a local road that runs in a north-east to south-west direction between Campbell Hill Road (local road) to the north-east and Miller Road (local road) to the south-west. Curtis Road intersects with a number of local roads near the subject site, including Larkview Avenue, Ashton Avenue and Wingara Street.

3.2 Road Description and Traffic Control

Curtis Road has a two-way undivided carriageway, with a width between kerbs of approximately 11 metres. This carriageway generally provides one travel lane per direction, with parking available on both sides of the road. At present, unrestricted parking is permitted along both sides of the Curtis Road, with the exception of the signposted 'No Stopping' near its intersections with Larkview Avenue and Campbell Hill Road.

The legal speed limit on Curtis Road is signposted at 50km/h, with the exception of the signposted "School Zone" of 40km/h on school days. Curtis Road intersects with Larkview Avenue, Ashton Avenue and Wingara Street near the subject site, which are all controlled by 'T-priority' traffic measures given to traffic travelling along Curtis Road.

Figure 2: Aerial photograph of the subject site and surrounding road network

Hemanote

Consultants

Photo 2: Curtis Road at the subject site - facing north-east

Photo 3: Curtis Road at the subject site - facing south-west

3.3 Current Traffic Flows

A traffic volume survey was undertaken by Hemanote Consultants at the following intersections of:

- Curtis Road / Miller Road / Culgoa Bend
- Curtis Road / Campbell Hill Road / Arlewis Street

in the vicinity of the subject site on Thursday 05 December 2024, during morning period (7:00am to 12:00pm) and afternoon/evening period (12:00pm to 7:00pm), considering the proposed peak hours of operation and traffic peak periods.

The traffic flows in the morning & afternoon peak hours are shown in Tables 1 and 2 below and in *Appendix 'B'* of this report.

Traffic movement	Afternoon Peak Hour (Vehicles Per Hour)	Evening Peak Hour (Vehicles Per Hour)		
	1.00pm – 2.00pm	5.00pm – 6.00pm		
	Miller Road (North of Curtis Roa	ad / Culgoa Bend)		
Northbound	232	135		
Southbound	262	170		
	Miller Road (South of Curtis Roa	ad / Culgoa Bend)		
Northbound	274	205		
Southbound	248	147		
	Curtis Road (East of Mi	ller Road)		
Eastbound	185	170		
Westbound	139	87		
Culgoa Bend (West of Miller Road)				
Eastbound	12	6		
Westbound	22	16		

Table 1: Current traffic flows in the vicinity of the subject site (on a typical weekday)

Hemanote

Page 10

		1		
Traffic movement	Afternoon Peak Hour (Vehicles Per Hour)	Evening Peak Hour (Vehicles Per Hour)		
	1.00pm – 2.00pm	5.00pm – 6.00pm		
	Campbell Hill Road (North o	f Curtis Road)		
Northbound	274	167		
Southbound	232	240		
	Campbell Hill Road (South of	Arlewis Street)		
Northbound	235	109		
Southbound	189	123		
	Arlewis Street (East of Camp	bbell Hill Road)		
Eastbound	58	62		
Westbound	45	23		
Curtis Road (West of Campbell Hill Road)				
Eastbound	193	151		
Westbound	184	171		

Table 2: Current traffic flows in the vicinity of the subject site (on a typical weekday)

The results of the traffic volume counts undertaken determined that the traffic afternoon peak period on Curtis Road / Miller Road / Culgoa Bend and Curtis Road / Campbell Hill Road / Arlewis Street were between 1:00pm to 2:00pm and the evening peak period was between 5:00pm to 6:00pm on a typical weekday.

The existing traffic flows on Curtis Road, Miller Road, Culgoa Bend, Campbell Hill Road and Arlewis Street are appropriate for local roads, in a mainly residential area, where traffic is free flowing without major queuing or delays near the subject site in peak hours, with spare capacity.

It is determined that the existing mid-block level of service on Curtis Road is at level 'A' in accordance with Table 4.4 of the Roads & Maritime Services' *"Guide to Traffic Generating Developments - 2002"* (shown on the following page).

Hemanote	
	Consultants

Level of Service	One Lane (veh/hr)	Two Lanes (veh/hr)
А	200	900
В	380	1400
С	600	1800
D	900	2200
E	1400	2800

Table 4.4: Urban road peak hour flows per direction RMS Guide)

> Current Intersection Performance (pre-development)

Average Vehicle Delay (AVD) and Level of Service (LOS) – The AVD and LOS provide a measure of the operational performance of an intersection, as indicated in Table 4.2 of the Roads & Maritime Services "*Guide to Traffic Generating Developments - 2002*" (shown on the following page).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Signs
А	< 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
E	57 to 70	At capacity; at signals, incidents will cause excessive delays	At capacity, requires other control mode
		Roundabouts require other control mode	

 Table 4.2:
 Level of Service Criteria for intersections (RMS Guide)

A **pre-development** SIDRA intersection performance analysis was undertaken for the existing intersections of Curtis Road / Miller Road / Culgoa Bend and Curtis Road / Campbell Hill Road / Arlewis Street, in the vicinity of the subject site (Pre-development).

Refer to Figure 3 on the following page, showing the intersections network layout controlled by a roundabout at Curtis Road / Miller Road / Culgoa Bend and a cross-intersection with associated 'STOP' signage at Curtis Road / Campbell Hill Road / Arlewis Street. Curtis Road, Miller Road, Culgoa Bend, Campbell Hill Road and Arlewis Street have undivided carriageways, all with one through traffic lane in each direction.

Figure 3: Existing Intersection Network Layout

The pre-development SIDRA performance analysis determined that the current operational performance of the existing intersections of Curtis Road / Miller Road / Culgoa Bend and Curtis Road / Campbell Hill Road / Arlewis Street are in good operation at a Level of Service (LOS) 'A' during AM and PM peak periods.

Refer to the summary of the results of the SIDRA intersection performance analysis attached in *Appendix 'C'* of this report.

3.4 Existing Transportation Services

The subject site has good access to public transport services in the form of trains and buses. The site is located approximately 1.5 km from Chester Hill Railway Station, 1.7 km from Leightonfield Hill Railway Station and 2.5 km from Sefton Railway Station.

Frequent bus services operate along Curtis Road, Miller Road, Campbell Hill Road, Gurney Road and Wolumba Street, in close proximity to the subject site (i.e. bus routes 916 and M91).

Figure 4: Bus services near the subject site (Bus no. 916)

4 PROPOSED DEVELOPMENT

4.1 Description of the proposal

The proposed development application seeks approval for the change of use of the existing bowling club building located at **11 Curtis Road, Chester Hill**, to a community facility.

The proposed development will include the following:

- Ground level consisting of the main hall, office/administration, kitchen and storage, and amenities, as well as lawn area at the rear of the site, to be used for sports.
- Assembly area of 196m².
- Existing on-site carparking area consisting of a total of forty-seven (47) car parking spaces, including two (2) accessible car parking spaces, in addition to a dedicated emergency vehicle parking area, at-grade level.
- The proposed hours of operation and expected capacity are as follows:
 - Monday 9:00am to 4:00pm community assistance maximum 50 people.
 - Monday 5:00pm to 9:00pm scouts group meetings maximum 50 people.
 - Tuesday 9:00am to 4:00pm community services maximum 50 people.
 - Tuesday 5:00pm to 9:00pm soccer training or club meeting maximum 50 people.
 - Wednesday 9:00am to 4:00pm community services maximum 50 people.
 - Wednesday 5:00pm to 9:00pm scouts group meeting maximum 50 people.
 - Thursday 9:00am to 4:00pm food supply, translation, government assistance, forms application assistance maximum 50 people.
 - Thursday 5:00pm to 9:00pm soccer training or club meeting maximum 50 people.
 - Friday 12:00pm to 3:00pm Islamic prayer maximum 100 people.

Consultants

- Friday 5:00pm to 10:00pm community/board meeting maximum 80 people.
- Saturday 9:00am to 4:00pm family gathering, community activities, school program – maximum 50 people.
- Saturday 5:00pm to 10:00pm family events, funeral services (condolences only) – maximum 80 people.
- Sunday 11:00am to 2:00pm christening, mass, or similar maximum 100 people.
- Sunday 5:00pm 10:00pm Family events maximum 80 people.
- The overall expected maximum capacity on site at any given time is up to 100 people in attendance.

Refer to *Appendix 'A'* for the proposed development plans.

4.2 Vehicular Access

The vehicular access to and from the off-street parking facilities will be via the existing access driveway crossing located in Curtis Road. The access driveway has a width of 8.6 metres, which is adequate for a low volume (Category 1) access driveway in accordance with AS2890.1:2004 – Table 3.2.

The existing access driveway provides two-way vehicular movements, where two vehicles can pass each other at the same time without causing delays or congestion to traffic on the street, and is located more than 6 metres from the tangent point of the adjacent kerbline, in accordance with Figure 3.1 of AS2890.1:2004.

Vehicular access is located and constructed in accordance with the requirements of AS2890.1:2004, where vehicles enter and exit the site in a forward direction at all times.

The clear sight line triangle (2.5m x 2m) between the driver's eye view and pedestrians is provided on the exit side of the driveway, as per Figure 3.3 of AS2890.1:2004.

4.3 On-site Parking Provision

Canterbury-Bankstown Development Control Plan 2023, Chapter 3.2, Section 2, Table 2-5, requires on-site parking for places of public worship to be provided at a minimum rate of:

- Place of public worship that is located outside a centre (B2, B4 Zone) and where the gross floor area of the assembly area is 500m² or less:
 - 1 car space per 5m² of the assembly area or a rate based on a parking study, of the applicant is seeking a reduced parking provision.
- Bicycle visitors: 1 space per 20 car spaces.

Refer to Table 3 below for the required and proposed car parking provision for the subject development site:

Type of use	Parking rate	No. seats / Area	b. seats / Area Total car parking spaces required	
		Place of Public Wo	orship	
Place of Public Worship	1 space per 5m ² of assembly area	196m²	40	47
Total				47
Compliance with off-street car parking				Yes

Table 3: On-site parking requirement and provision

The proposed development with a total assembly area GFA of 196m² would therefore require the provision of 40 on-site car parking spaces and 2 bicycle storage spaces.

The proposed development provides an existing on-site carparking area consisting of a forty-seven (47) car parking spaces, including two (2) accessible car parking spaces, in addition to a dedicated emergency vehicle parking area, at-grade level.

Therefore, the proposed on-site parking provision is adequate for the proposed development and in compliance with Council's parking requirements.

4.4 On-site Parking Layout and Circulation

The layout of the existing on-site car parking area and manoeuvring arrangements has been designed to enhance vehicular and pedestrian access, where vehicles enter and exit the site in a forward direction, through the provision of adequate internal aisle width and turning space, and is to be retained.

4.5 Waste Collection & Deliveries

All waste storage is to take place within the site and to be collected as per the current arrangements for the subject site, which is to be outlined in the Waste Management Plan.

Consultants

5 ON-STREET PARKING PROVISION

5.1 Existing Parking Controls

The subject site is located in a mainly residential area, where unrestricted parking is permitted along both sides of the Curtis Road, with the exception of the signposted 'No Stopping' near its intersections with Larkview Avenue and Campbell Hill Road.

5.2 Impacts of Proposed Development on Parking

The parking demand resulting from the proposed development can be accommodated within the existing adequate and compliant on-site parking spaces. The subject site has good access to existing public transport in the form of train and bus services.

Therefore, the proposed development will not have adverse impacts on parking in the surrounding area.

6 EXTERNAL TRAFFIC IMPACT

6.1 Estimated Future Traffic Generation

The "Guide to Transport Impact Assessment - 2024" does not provide a traffic generation rate for places of public worship.

It is considered that the highest vehicle trips from the proposed development will be generated during the weekday Islamic prayer services on <u>Friday afternoons</u>.

It should also be noted that family members, friends and neighbours often tend to utilise carpooling to travel to prayer together on Fridays in small groups, with an average of 2 to 3 people per vehicle, therefore, minimising the overall number of vehicle trips.

The subject community facility would also run a minibus shuttle service to pick-up and drop-off members of the local community and in particular the elderly from the surrounding area, when needed. Others who live close by the site may choose to walk or catch a bus and in particular the youth members.

Therefore, it is estimated that between an average of 40 to a maximum 50 vehicle trips will be generated, including drop-offs and pick-ups during the main peak prayer period on Friday afternoons. Traffic generation of other uses of the site at other times of the week will be significantly lower.

6.2 **Projected Intersection Performance (post-development)**

Average Vehicle Delay (AVD) and Level of Service (LOS) – The AVD and LOS provides a measure of the operational performance of an intersection, as indicated in Table 4.2 of the Roads & Maritime Services "*Guide to Traffic Generating Developments - 2002*" (shown on the following page).

Level of Service	Average Delay per Vehicle (secs/veh)	Traffic Signals, Roundabout	Give Way & Stop Signs
А	< 14	Good operation	Good operation
В	15 to 28	Good with acceptable delays & spare capacity	Acceptable delays & spare capacity
С	29 to 42	Satisfactory	Satisfactory, but accident study required
D	43 to 56	Operating near capacity	Near capacity & accident study required
E	57 to 70	At capacity; at signals, incidents will cause excessive delays	At capacity, requires other control mode
		Roundabouts require other control mode	

Table 4.2: Level of Service Criteria for intersections (RMS Guide)

A **post-development** SIDRA intersection performance modelling analysis was undertaken for the intersections of Curtis Road / Miller Road / Culgoa Bend and Curtis Road / Campbell Hill Road / Arlewis Street, in the vicinity of the subject site, and it was modelled as the proposed network layout as shown in Figure 5 below.

Refer to the summary of the results of the SIDRA intersection performance analysis (undertaken for pre & post development, including the 10-year future growth) attached in *Appendix 'C'* of this report.

Figure 5: Intersection Network Layout

Hemanote

The following <u>assumptions</u> have been considered and adopted in the SIDRA Network Intersection modelling for the post-development conditions considering that the main access to and from the subject site is through Curtis Road:

- Peak hour traffic generation has been estimated, as outlined in Section 6.1 of this report.
- Afternoon and evening PM Traffic generated by the development was equally adopted for inbound and outbound traffic.
- The distribution of traffic generated from the development at the **modelled intersections** has been assigned based on existing traffic patterns at the approaching and departing legs of these intersections, as well as observed driver behaviour.
- Pre-development network analysis is modelled for the base year (2024) and 10 years of future growth (2034) in surrounding traffic. The annual traffic growth rate for the 10-year future period was based on the SIDRA intersection analysis software, which allows for future analysis of surrounding traffic by applying a uniform growth rate of 2% for each year over the 10-year period.
- Post-development network analysis is modelled for when the proposed development is in operation and after 10 years of future growth in surrounding traffic.

These assumptions will result in the development trip distribution shown in Figures 6 and 7 for relevant traffic movement and modelled intersection.

Figure 6: Development Traffic Distribution on the Surrounding Road Network – PM Peak (Afternoon)

Figure 7: Development Traffic Distribution on the Surrounding Road Network – PM Peak (Evening)

The outcome of the SIDRA modelling

A summary of the results of the SIDRA intersection performance analysis has been provided in Tables 4 to 7 below, as well as the SIDRA Movement Summary Tables attached in *Appendix 'C'* of this report.

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	A	4.8	0.232
Base Year 2024 – Post Development	A	4.9	0.243
Future Year 2034 – Pre-Development	А	5.0	0.285
Future Year 2034 – Post Development	А	5.1	0.300

Table 4: Network SIDRA Modelling - Curtis Rd / Miller Rd / Culgoa Bnd - 1.00pm - 2.00pm

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	А	4.9	0.167
Base Year 2024 – Post Development	А	5.1	0.178
Future Year 2034 – Pre-Development	А	5.0	0.202
Future Year 2034 – Post Development	A	5.2	0.216

Table 5: Network SIDRA Modelling - Curtis Rd / Miller Rd / Culgoa Bnd - 5.00pm - 6.00pm

Hemanote Consultants

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	A	4.8	0.251
Base Year 2024 – Post Development	А	5.1	0.271
Future Year 2034 – Pre-Development	А	5.3	0.332
Future Year 2034 – Post Development	А	5.6	0.360

Table 6: Network SIDRA Modelling – Curtis Rd / Campbell Hill Rd / Arlewis St – 1.00pm –

 2.00pm

Modelled Peak	Average LOS	Average Delay (sec)	DOS (Veh/C)
Base Year 2024 – Pre-Development	А	4.7	0.152
Base Year 2024 – Post Development	А	4.9	0.166
Future Year 2034 – Pre-Development	А	4.9	0.192
Future Year 2034 – Post Development	А	5.1	0.210

 Table 7: Network SIDRA Modelling – Curtis Rd / Campbell Hill Rd / Arlewis St – 5.00pm –

 6.00pm

The SIDRA analysis results indicate that the proposed development will have minimal impact on the operational performance of key intersections in the study area, both in the base year and the 10-year future scenarios.

Base Year findings:

For the base year (2024), the proposed development (post-development) will not alter the current LOS (pre-development) at the subject intersections of Curtis Road / Miller Road / Culgoa Bend and Curtis Road / Campbell Hill Road / Arlewis Street, as outlined earlier in Section 3.3 of this report, and will continue to operate at its current levels of service during weekday AM and PM peak periods.

Future Year findings:

In the 10-year scenario without the development, the intersections of Curtis Road / Miller Road / Culgoa Bend and Curtis Road / Campbell Hill Road / Arlewis Street, will continue to operate at LOS 'A' during the weekday AM and PM peak periods.

For the future year (2034), the proposed development (post-development) will not alter the future LOS at the subject intersections and will continue to operate at the predicted future levels of service.

Therefore, the estimated traffic generation from the proposed development is of low impact on existing flows on Curtis Road and surrounding streets and will not have adverse impacts on the current operational performance of the subject existing intersections, which will continue to operate at the same levels of service.

7 MANAGEMENT OF TRAFFIC & PARKING DURING PEAK USE & SPECIAL EVENTS

The expected maximum attendance during the **peak use** & **special religious events** of Friday afternoons and Sunday mornings/afternoons at the subject site is up to 100 people.

The traffic and parking demand during the peak use and special events can be accommodated within on-site car parking area.

It is recommended that at least 2 to 3 staff members/volunteers patrol the site and fronting street, in high visibility gear during the peak use periods, to ensure there is no disturbance to adjacent properties and their driveways and to efficiently control traffic movements of vehicles into and out of the site.

MANAGEMENT OF TRAFFIC & PARKING DURING PEAK USE OPERATIONS:

• The management of the subject site to provide its community members an educational information flyer advising of safe parking and traffic practices during attending the site and that all vehicles are to be parked within the allocated on-site car parking spaces and that under no circumstances that members block driveways of neighbouring properties.

• Allocated Staff members/volunteers in high visibility gear will be present on site to regulate traffic movements into and out of the site and to manage on-site parking, to ensure that no vehicles are illegally parked and are not obstructing driveways of adjoining properties.

All vehicles are to be parked within the allocated line marked car parking spaces, with no stopping of vehicles or dropping-off/picking-up of people to take place near the driveway, to avoid traffic congestions or vehicle queuing.

• The management of the subject site may have the option to run an additional minibus (i.e. van) service to pick-up and drop-off locals and elderly members of the community, who wish to attend services from the neighbouring local areas, if possible.

8 CONCLUSION

It can be concluded from the traffic and parking impact assessment that the proposed change of use of the existing bowling club building located at **11 Curtis Road**, **Chester Hill**, to a community facility, will not have adverse impacts on existing traffic or parking conditions and is worthy of Council's support in its current form.

- The current traffic flows on Curtis Road, Miller Road, Culgoa Bend, Campbell Hill Road and Arlewis Street are appropriate for local roads, in a mainly residential area, where traffic is free flowing without major queuing or delays near the subject site in peak hours, with spare capacity.
- The estimated traffic generation from the proposed development is of low impact on existing flows on Curtis Road and surrounding streets and will not have adverse impacts on the current operational performance of the subject existing intersections, which will continue to operate at the same levels of service. The traffic generated by the proposed development can be readily accommodated within the existing road network.
- The potential increase in the number of vehicle movements in and about Curtis Road and adjacent streets will not have adverse impacts on the amenity of the area.
- The parking demand resulting from the proposed development can be easily accommodated within the existing adequate and compliant on-site parking facilities, which is in compliance Council's parking requirements.
- The on-site vehicular access, car parking layout and vehicular circulation is adequate for the proposed development and in accordance with AS2890.1:2004 and AS2890.6:2009 (and the updated AS2890.6:2022), where vehicles are to enter and exit the site in a forward direction at all times.
- The subject site has good access to existing public transport services.
- The proposed development will not have adverse impact on parking in the surrounding area.

Hemanote	
	Consultants

Appendix 'A' – Proposed Development Plans

Consultants

Hemanote

30 April 2025

Hemanote

Consultants

Consultants

Appendix 'B' – Traffic Volume Surveys

30 April 2025

Hemanote

Consultants

Appendix 'C' – SIDRA Intersection Analysis

MOVEMENT SUMMARY - 1.00pm - 2.00pm (Afternoon) - Base Year 2024 - Curtis Road / Miller Road /

Culgoa Bend

			Pr	e-D	eve	Pre-Developmen	nen	+							Δ.	ost.	Dev	elop	Post-Development	F				
Vehicle Movement Performance	nent Perto	mance											Vehicle Movement Pi	erforman	8					X	8		a	22
Mov Tum Mov ID Clans	t Denund Boust [[otal HV]]	5	America Flower A	<u>s</u> , *	Net Series	Aver Level of A Delay Service sec	Aver Back	Of Queue Pigp Dec J	63	T & #	Aver No of S Cycles	Awer Speed	Mov Tum Mov D ID Class [17	Demand Flows Flows Flows Four HV J I J	American Tickes	ġģ ₹	And No.	Service	Aver. Back Of Queue Ptop [Weh Dist] veh m	Of Queue	dan da	티웃쥖	Aver No. of Cycles	Aver. Speed km/h
South: Miler Road	1												South: Miller Road											
		9 20	9 20	0.229	3.6	LOSA.	90	39	0.27	140	0.27	44.2	1 L2 AI MCs	9 20	9 20	0.239	36	LOSA	0.6	4.1	0.28	0.48	0.28	44.2
			2.0	0.229		LOSA	9.0	39	0.27	17.0	0.27	43.0					3.5	LOSA	0.6	4.1	0.28	0.48	0.28	43.0
3 R2 AII MCs			20	0 229	51	LOSA	9.6	39	027	0.47	0.27	39.4	AI MCs	112 1.8			11	LOSA	0.6	4.1	0.28	0.48	0.28	39.4
Approach	288	2.0 288	20	0.229	4.9	LOSA	9.0	39	0.27	0.47	0.27	422		299 1.9	239 19	0.239	5.1	LOS A	9.0	41	0.28	0.48	0.28	42.1
East: Curtis Road	p												East: Curtis Road											
		77 2.0 77	77 2.0	0.139	4.3	LOSA	0.3	21	62.0	950	0.39	43.5	4 L2 AI MCs	81 19	81 19	0.147	43	LOSA	0.3	23	070	950	0.40	43.8
5 T1 AII MCs				0.139	41	LOSA	03	2.1	030	0.56	0.39	45.0	5 TI AI MCs	4 15	4 15		4.4	LOSA	0.3	23	070	0.56	0.40	46.0
6 R2 AII MOS	99	20		0.139	8.2	LOSA	03	21	620	0.56	0.39	43.0	AI MCs	69 1.9			8.3	LOSA	0.3	23	0.40	0.56	0.40	43.3
Approach	146	2.0 146	20	0.139	6.1	LOSA	6.0	2.1	B20	0.56	0.39	43.3		155 1.9	155 1.9	0.147	6.1	LOSA	0.3	23	0.40	0.56	0.40	43.6
North: Miller Road	p												North: Miller Road											
7 L2 AII MCs	8			0.232		LOSA	0.5	3.8	0.32	0.43	0.32	40.6	7 L2 AI MCs	98 1.8		0.243	4.0	LOSA	0.6	4.0	034	044	0.34	40.6
F			20	0 232		LOSA	9.6	3.8	032	0.43	0.32	43.8			177 2.0	0.243	3.8	LOSA	0.6	4.0	0.34	0.44	0.34	43.8
9 R2 AII MCs		11 20 1	11 20	0.232	7.8	LOSA	9.0	3.8	032	0.43	0.32	44.4				0.243	51	LOSA	0.6	4.0	0.34	0.44	0.34	44.4
Approach	276	2.0 276	6 20	0.232	39	LOSA	0.5	38	032	0.43	0.32	43.2		285 1.9	285 1.9	0.243	4.0	LOSA	0.6	40	0.34	0.44	0.34	43.1
West: Cuigoa Bend	pu											T	West: Cuigou Bend											
10 L2 AIIN		1 20	1 20	0.016	5.5	LOSA	0.0	0.3	0.54	0.57	0.54	42.7	10 L2 AI MCs	1 2.0	1 20	0.017	5.6	LOSA	0.0	0.3	0.55	0.57	0.55	43.0
11 T1 AILMCs				0.016	24	LOSA LOSA	0.0	03	054	150	054	40.8	I		6 17	0.017	57	LOSA	00	03	0.55	190	0.66	412
12 R2 AII MC8		7 20 7	7 20	0.016		LOSA	0.0	0.3	0.54	0.57	0.54	42.3	22	7 2.0	7 20	0.017	9.6	LOSA	0.0	0.3	0.55	0.57	0.55	42.6
Approach	14	2.0 14	14 2.0	0.016	7.6	LOSA	0.0	03	054	150	054	419	proach	15 1.9	15 1.9	0.017	1.7	LOS A	0.0	0.3	0.55	0.57	0.55	42.2
All Vehicles	124	724 2.0 724	724 2.0	0.232	48	LOSA	0.5	39	0.32	170	0.35	42.8	All Vehicles 7	754 1.9	754 19	0.243	49	LOSA	9.6	4.1	0.33	0.48	0.33	42.9
												1												
												-												

Hemanote **Consultants**

30 April 2025

MOVEMENT SUMMARY – 1.00pm – 2.00pm (Afternoon) – Base Year 2024 – Curtis Road / Campbell Hill

Road / Arlewis Street

				-e-l	Dev	Pre-Development	Iame	IL									50	i-De	Neik	Lost-Developillelit					
													3												
Vehicle Me	ovement	/ehicle Movement Performance	lce			1911							Vehicle Moveme	ovement	ent Performance	ance								6	ļ
Mov Tum ID	Tum Mov Classs	Demand	Arrival	<u> </u>		Aver. Level of Dolay Sorvice	÷.		e Prop.	Ш ĝ	Aver. No. of	Aver. Spaad	Mov Tum 10	Tum Mov Chass	Demand Flows	1 Amval Bows	val Deg ws Safn	g Aver in Delay	r. Level of N. Service		Aver Back Of Queue Prop. Que	qor Aug	Sign Er	Aver No. of	Aver Speed
		Ξ×	[Total HV] vehih %	ş			Ne la	a Det		100	Cydes	hmth	8		[Kotal H/V]	-					= Det			Cydes	
South: Campbell Hill Road	Interest Hill Fight	Road											South: Campbell Hill Road	phell Hill	Road										
1	L2 AI MCs	2	73 2.0				0.0	0.3	0.03	0.19	0.03	46.8	1 12	All MCs	81 18	81	1.8 0.136		7 LOSA	A 0.0	0.3	0.03		0.03	46.8
	AI MCs	18	165 2.0				0.0	0.3	0.03	0.19	0.03	47.5	2 H			題.					0.0			0.03	47.6
3 R2	AI MCs	8 20		T		3	0.0	0.3	0.03	0.19	0.03	45.0	3 82	All MCs		đ			9				1	0.03	45.0
Approach		247 2.0	247 2.0	0.132	1.6	NA	0.0	0.3	0.03	0.19	0.03	47.2	Approach		256 19	256	1.9 0.136	36 1.7	Z NA	A 0.0	0.3	003	0.20	0.03	47.2
East Arlewis Street	is Street												East Arlewis Street	is Street											
4 12	All MCs.	2 2.0	2 20	0.079	8.0	LOSA	0.1	0.8	0.50	96.0	0.50	37.7		All MCs	2 20	2	2.0 0.0	85 8.0	0 LOSA		0.8	0.51	0.96	0.51	37.6
6 TI	All MCs	20 2.0	20 2.0	0.079	10.3	I LOSA	0.1	0.8	0.50	96.0	0.50	21.7	5	All MCs	22 18	2		85 10.5	5 LOSA		0.8	0.51	0.96	0.51	27.6
6 R2	All MCs	25 2.0	25 20	0.079		I LOSA	0.1	0.8	0.50	0.96	0.50	30.9	6 R2	All MCs	25 20	8	2.0 0.085	85 11.6	6 LOSA	A 0.1	0.8	0.51	0.96	0.51	30.8
Approach		47 2.0	47 2.0	0.079	10.7	LOSA	0.1	0.8	0.50	96.0	0.50	30.4	Approach		49 1.9	46	1.9 0.085	85 10.9	9 LOSA	A 0.1	0.8	0.51	0.96	0.51	30.2
North: Campbell Hill Road	pball Hill F	Road											North: Campbell Hill	int liedq	Road										
7 12	AI MCs	15 2.0	15 2.0	0.147	5.4	LOSA	0.3	1.9	0.30	0.36	0.30	39.2	7 12	All MCs	15 2.0	15		55 55	5 LOSA	A 0.3	2.1	0.32	2 0.38	0.32	38.9
	All MCs	128 2.0	128 2.0	0.147			0.3	1.9	0:30	0.36	0:30	45.2	11 8	All MCs	128 20	128					2.1		0.38	0.32	45.0
9 R2	All MCs	101 2.0	101 2.0	0.147	5.5	LOSA	0.3	1.9	02.0	0.36	0:30	35.5	9 R2	All MCs	112 1.8	112	1.8 0.1	56 56	6 LOSA					0.32	35.1
Approach		244 2.0	244 2.0	0.147	2.9	AN (0.3	1.9	0.30	0.36	0.30	42.9	Approach		255 1.9	255	1.9 0.155	55 3.1	1 NA	A 03	2.1	0.32	0.38	0.32	42.5
West Curtis Road	s Road												West Curtis Road	s Road											
	All MCs		98 2.0	0.251	8.3	A LOSA	0.4	3.0	0.44	0.89	0.44	39.1		All MCs	103 1.9	103	1.9 0.271		4 LOSA					0.45	39.3
H H	TI ALMCs		37 2.0	0.251	10.7	LOSA	0.4	3.0	0.44	0.89	0.44	40.0		All MCs	40 1.8	40	1.8 0.2						0.89	0.45	40.2
12 R2	AI MCs	68 2.0	68 2.0	0.251	11.5	LOSA	0.4	3.0	0.44	0.89	0.44	41.7	12 R2	All MCs	73 1.9	13	1.9 0.271	71 11.8	8 LOSA	A 0.5	32	0.45	6 0.89	0.45	41.9
Approach		203 2.0	203 20	0.251	9.8	I LOSA	0.4	3.0	0.44	0.89	0.44	40.3	Approach		216 1.9	216	19 02	71 10.0	0 LOSA			0.45		0.45	40.5
All Vehicles		742 2.0	742 2.0	0.251	4.8	NA NA	0.4	3.0	0.26	0.48	0.26	42.4	All Vehicles		776 1.9	176	1.9 0.271	71 5.	T NA	A 0.5	32	0.27	0:00	0.27	42.4

MOVEMENT SUMMARY – 5.00pm – 6.00pm (Evening) – Base Year 2024 – Curtis Road / Miller Road / Culgoa Bend

				Pre-	De	Pre-Development	ome	nt										Po	st-D	eve	Iopi	Post-Development	.				
													1 2														
Vehicle /	Vehicle Movement Performance	Performa										12	Veh	icle Moveme	ement i	Perform	ance										
Mov Tur ID	Tum Mov Classs	Demand Antval Flown Flown [Total HV] [Total HV] veh/h % veh/h %	Flown Flown [Total HV] veh/h %	ne y		Aver Level of Delay Service Sec	Aver Back C Veh. veh	ick Of Queue Deit] m	an Prop Dire	Slop Rate	Aver No. of Cycles	Aver Speed km/h	¶a	Tum Mov Cluss	E 2	Densed 1 Constraints 1 Constra	100	12	≺n tess	Anne Lo Delay Se	Survice A	Aver. Eack Of Queue Prop. [Vich Dist] Que vich m	Of Observe Dist]	Prop.	티랆킕	Aver. No. of 3	Avuer. Spood km/h
South: Miller Road													South	th: Miller Road	Road												
1 12	2 AI MCs	7 2.0		0 0.167		3.4 LOSA		2.6	0.20	0.50	0.20	44.0	-		AI MOs			20	178		OS A	0.4	2.8	0.21	0.61	0.21	44.0
1		94 2.0	94 2.0			3 LOSA	0.4	2.6	0.20	0.50	0.20	42.6	2	T1 A	All MCs	94 2.0	16 0	50	0.178	3.3 U	LOSA	0.4	2.8	0.21	0.51	0.21	42.6
3 R.	2 AI MOS	115 2.0			7 7.4			2.6	0.20	0.50	0.20	38.9			All MCs			1.8	178		OSA	0.4	2.8	0.21	0.51	0.21	38.9
Approach		216 2.0		0 0.167		F LOSA		2.6	0.20	0.60	0.20	41.2	App	Approach				1.9	1178		ASO	0.4	2.8	0.21	0.51	0.21	412
East Ourlis Road	tis Road												East	t Curris Road	peop												
4	2 AI MCs	41 2.0	41	0 0.081		3.6 LOSA		1.2	0.29	0.63	0.29	43.6	4		All MCs			61	600		OSA OSA	0.2	1.3	0.30	0.54	0:30	44.1
5 11	1 AI MOS	5 2.0	6				0.2	12	0.29	0.53	0.29	45.1	N.	TI A	All MCs	6 1.7	1 6	17	690.0	3.8 U	LOSA	0.2	1.3	0.30	0.54	0.30	46.0
6 R2	2 AI MCs	45 2.0	45 2.0			7 LOSA		12	0.29	0.53	670	43.2	9		AI MOs			1.8	6900		OSA	0.2	1,3	0:30	0.54	0:30	43.7
Approach		92 2.0	66	0 0.081	1 6.7			12	0.29	0.63	0.29	43.6	App	Approach				1.8	680		ASO	0.2	5	0.30	054	0.0	44.0
North: Miller Road	ler Road												North	hr. Miller F	Road												
7 12	2 AI MOs	61 2.0	61 2.0	0 0.156		3.8 LOSA		2.4	0.30	0.43	0.30	40.8	-	L2 A	All MCs			1.8	0.165		LOSA	0.4	25	0.33	0.44	0.33	40.8
F 00	1 AI MOs	114 2.0	114 2.0	0 0.156		3.7 LOSA	0.3	2.4	0.30	0.43	0.30	43.9	80		AI MOs	114 2.0	114	20	0.166	3.8 U	LOSA	0.4	2.6	0.33	0.44	0.33	43.9
9 R2	2 AI MOs	4 2.0	4 2.0	0 0.155	6 7.8	8 LOSA		2.4	0.30	0.43	0.30	44.5	n	R2 A	AI MCs			20	165		OSA	04	2.5	0.33	0.44	0.33	44.5
Approach		179 2.0	179 2.0	0 0.156		3.8 LOSA	03	24	0.30	0.43	0.30	43.2	App	Approach			9 185	19	165		OS A	0.4	2.5	0.33	0.44	0.33	43.2
West: Culgoa Bend	goa Bend												Wes	West Cuigoa Bend	Bend												
	2 AI MCs	3 20	3 2.0	0 0,008		4.8 LOSA		0.1	0.47	0.47	0.47	44.2	0		AI MCs			20	600		OSA N	00	0.1	0.48	0.48	0.48	44.6
11 11	1 AI MCs	3 2.0		0 0.008	6 4.7			0.1	0.47	0.47	0.47	42.9	11	T1 A	AI MOS	4 1.5	5	15 0	600		OSA OSA	0.0	0.1	0,48	0.48	0.43	43.5
12 R2	2 AI MOs	1 2.0	1 2.0	0 0.008	8 8 8		0.0	0.1	0.47	0.47	0.47	43.7	12	~	M MCs				6000	8.9 1	LOSA	00	0.1	0.48	0.48	0.48	44.1
Approach		7 2.0		0 0.008	6.3			0.1	0.47	0.47	0.47	43.7	App	Approach		8 1.8	80	1.8 0	600		OS A	0.0	0.1	0.48	0.48	0.48	44.1
All Vehicles	2	494 2.0	494 2.0	0 0.167	7 4.9	A LOSA	0.4	2.6	0.26	0.48	0.25	42.5	AIN	All Vehicles		61 023	623 6	1.9	0.178	5.1 L	LOSA	0.4	2.8	0.27	0.49	0.27	42.6

Hemanote

Consultants

MOVEMENT SUMMARY – 5.00pm – 6.00pm (Evening) – Base Year 2024 – Curtis Road / Campbell Hill Road / Arlewis Street

			L.	re-l	Dev	Pre-Development	mer	It								Po	st-D	eve	Idoli	Post-Development	ц,				
Vehic	hicle Movement Performance	t Performa)Ce										Vehicle Movement Performance	nent Peri	ormance										
Mav	Tum Mov Class	Demand Flows	I Anived Hows	C 41		Aver Level of Delay Service	Aver Back [Veh.	Aver Back Of Queue Pings Que [Veh. Dist]	Gree Bare	11 g g	Aver S No. of S Cycles	Aver	Mov Tum Mov ID Class		Demand Rows Iotal HV] [To	wid Antival wis Flows N] [Total HV]			Level of A Service	Aver Back Of Queue Prop. Que [Veh. Dist]	Of Queue Dist]	Prop.	Eff. Stop Rate	Aver No. of S Cycles	Aver Speed
South	vervi South: Campbell Hit Road		vitita 🕺	<u>د</u>	803		with	E				Arraft	South: Campbell Hill Road	I Hill Road		R	y s	¥		UBA	-				UIIX
-	L2 AI MCs	40 2.0	40 2.0	0.062	47	I LOSA	0.0	0.4	60.0	0.27	0.09	45.3	L2	AI MCs 44	44 1.8	44 1.8	0.065		LOSA	0.0	0.4	60'0	0.28	0.09	45.3
14	T1 AI MCs		60 20				0.0	0.4	60.0	12.0	60.0	46.3	F 8				0.065		LOS A	0.0	4.0	60.0	0.28	60.0	46.4
Annmach	HZ AILMUS	115 20	115 20	0.062	5.0	A NA	00	0.4	800	0.27	000	44.0	Approach	All MUS 10	19	07 CI	0.065	24	NA	0.0	0.4	600	070	60.0	45.7
							ŝ			22															
East	East Arlewis Street												East, Arlewis Street	reet											
4	L2 ALMCs	1 2.0	1 20	160.0	61	A LOSA	0.1	0.4	0.44	16.0	0.44	38.4	4 L2 AII		2.0		0.041		LOSA	0.1	0.4	0.45	0.92	0.45	38.4
40	T1 AILMOS	11 20	11 2.0	0.037	9.2		0.1	0.4	0.44	0.91	0.44	28.9	H	All MCs 13	1.7	13 1.7	0.041	94 D	LOSA	0.1	4.0	0.45	0.92	0.45	28.9
9	R2 AI MCs	14 20	14 20	160.0	10.2	2 LOSA	0.1	0.4	0.44	16.0	0.44	31.8	6 R2 AII	AI MOs 14	2.0	14 20	0.041	10.5 L(LOSA	0.1	0.4	0.45	0.92	0.45	31.8
Approach	ach	25 2.0	25 20	0.037			0.1	0.4	0.44	16.0	0.44	31.3	Approach	27	1.8	27 1.8	0.041	07 6.6	LOSA	0.1	0.4	0.45	0.92	0.45	312
North	North: Campbell Hill Road	Road											North: Campbell Hill Road	Hill Road											
1	L2 AI MCs	17 20	17 20	0.145	4.9	A LOSA	6.0	2.0	070	0.34	0.20	39.0	7 12 AU	AI MCs 17	20		0.155		LOSA	0.3	2.2	021	0.35	0.21	38.9
8	TI AIMOS	106	106 2.0	0.145	0.3	B LOSA	0.3	20	0.20	0.34	0.20	45.1	F	All MCs 106	20	106 2.0	0.155		LOSA	0.3	22	021	0.35	0.21	44.9
6	R2 AI MCs	129 20	129 20	0.145	4.9	D LOSA	0.3	2.0	0.20	0.34	0.20	35.3	9 R2 All	All MCs 144	1.8	144 1.8	0.155	5.0 LU	LOSA	0.3	22	0.21	0.35	0.21	35.0
Approach	ach	253 2.0	253 2.0	0.145	3.0	NA NA	0.3	2.0	0.20	0.34	070	42.0	Approach	267	61	267 1.9	0.155	3.1	NA	0.3	2.2	0.21	0.35	0.21	41.6
West	West Curtis Road												West. Curtis Road	pe											
91	L2 AI MCs	: 102 2.0	102 2.0	0.152	7.8	B LOSA	0.3	1.8	0.23	06.0	0.23	39.9	Ц	All MCs 111	1.8	111 1.8	0.166		LOS A	6.0	2.0	0.23	0.89	0.23	40.2
11	T1 AII MCs	R	34 2.0	0.152		5 LOSA	6.0	1.8	0.23	06.0	0.23	40.7	11 T1 AII		1.9	36 1.9	0.166	9.7 LC	LOSA	0.3	2.0	0.23	0.89	0.23	41.0
12	R2 AI MOs	1 23 20			66	A LOSA	03	18	0.23	06.0	0.23	42.3	22	AI MCs 25	1.8	25 1.8	0.166	10.2 L	LOSA	0.3	2.0	0.23	0.89	0.23	42.7
Approach	ach	159 2.0	159 20	0.152		t LOSA	0.3	1.8	0.23	06.0	0.23	40.5	Approach	172	61	172 1.9	0.166	8.6 L	LOSA	03	2.0	0.23	0.89	0.23	40.9
All Vehicles	nicles	552 2.0	552 20	0.152	47	VN J	0.3	2.0	0.20	0.51	0.20	41.7	All Vehicles	58	2 61 383	585 1.9	0.166	49	NA	0.3	22	0.20	0.52	0.20	41.7

MOVEMENT SUMMARY – 1.00pm – 2.00pm (Afternoon) – Future Year 2034 – Curtis Road / Miller Road / Culgoa Bend

			-	-e-l	Dev	elop	Pre-Development	보									Δ.	ost	-De	velo	Post-Development	ut				
Vehi	/ehicle Movement	nt Performance	e unce										Vehi	Inicie Moverni		nt Performance	8									
Å00 ₩	Tum Mov Class	Domand Flown [Total HV] vehith	Flows Flows		hoter Detay	y Service	Awar Back		and a	1987 1987	No of Solar	Aver Speed	Nov Nov	Tum Mov Class		Demand Flows Rotal HV] []	Armal Flows Fort HV1 Sold HV1	Same Same	Detary Second	, Lervel of Service		Aver. Buck Of Queue Prop. [Veh Dist] veh m	ang (582 	Aver Cyclins of	Aver. Speed
South	South: Miller Road												South	South: Miller Road	per											
-	L2 AI MCs	s 11 20	11 20	0.281	_	/ LOSA		51	0.20	0.47	0.32	44.1	-													
2		213	213		1 3.6		0.7	1.5	0.32	0.47	0.32	42.8	2 11			213 20	213 2.0	0.293	3 3.6	LOSA	1 0.8	5.4	0.33	3 0.48	0.33	
3	R2 AI MOS	a 121 2.0	121	0 0.281	_	1 LOSA		5.1	0.32	0.47	0.32	39.1	e		AI MCs 13											39.1
Approach	Dach		346	0.281	_			15	0.32	0.47	0.32	42.0	Appn	oach	R											
East	East Curtis Road												East	Curris Road	R											
4	L2 AI MCs	a 92 20	92 20	0.174	4.6	6 LOSA		2.7	0.45	0.57	0.45	43.3	4			97 1.9										
10	T1 AI MCs	\$ 4 2.0	4 20	0 0.174	4.4	I LOSA	0.4	27	0.45	0.57	0.45	44.9	5		AI MCs	5 15	5 1.5	0.184	4 47	LOSA	V 0.4	2.9	0.45	5 0.58	0.45	45.9
9	R2 AI MCs			0.174	4 85			27	0.45	0.57	0.45	42.9	9	100	AI MCs 8	3 19										
Approach	oach	176 20	176			t LOSA		2.7	0.45	0.57	0.45	43.2	Appn	oach	11	8 19										
North	North: Miller Road												North: Mile	h. Miller Road	R											
1	L2 AI MCs	a 106 2.0	106	0 0.285	5 4.0	0 LOSA		5.0	0.37	0.44	0.37	40.2	~						42							
60	T1 AI MCs	212	212 20				0.7	20	037	0.44	0.37	43.5	80			212 20	212 20	0300		LOSA	X 0.7	5.3	0.40	0.46	0.40	43.5
6	R2 AI MCs	\$ 13 2.0	13 20	0 0,285	5 8.0	D LOSA		5.0	0.37	0.44	0.37	44.2	ŋ	1	AI MCA			1								
Approach	oach	331 2.0	331 2.0	0 0.285	5 41	I LOSA		5.0	0.37	0.44	0.37	42.9	Appr	oach	M		342 19	0300	42				040			
West	West Culgoa Bend											-	West	West Oulgoa Bend	pue											
10	L2 AI MCs	3 1 20	1 20	0.020 0	0 6.0	0 LOSA		03	0.59	0.60	650	42.4	10 12			1 2.0	1 2.0								0.60	
11	T1 AI MCs		9					0.3	650	0.60	0.59	40.4	=		All MCs	8 1.7										
12			9 20			I LOSA	0.0	0.3	0.59	0.60	0.59	42.0	12	- 1		9 20	9 20	0.022	2 10.2	10SA	0.1	0.4	0.60	0 0 60	0.60	423
Approach	oach	16 2.0	16 20	0.020	0 8.2	2 LOSA		0.3	0.69	0.60	0.59	41.5	Appr	upen		18 19										
AILV	All Vehicles	869 2.0	869 20	0 0,285	5 5.0	D LOSA	0.7	5.1	0.37	0.49	0.37	42.6	All M	All Vehicles	55	61 13	904 1.9	0.300	5.1	LOSA	A 0.8	5.4	0.38	3 0.49	0.38	42.6

Hemanote Consultants MOVEMENT SUMMARY – 1.00pm – 2.00pm (Afternoon) – Future Year 2034 – Curtis Road / Campbell Hill Road / Arlewis Street

		_	-e-l	Dev	Pre-Development	mer	Ħ								P	st-I	Jeve	dole	Post-Development	÷				
												2												
Vehicle Movement Performance	nt Perform.	ance										Vehicle Movement		Performance	Har and									
Mov Turn Mov ID Chess	Demand Flows	Flows	85	Anne. Delaw	Surrect	Aver. Back Of	A Of Quer	Oueue Prop. Oue	۳,	NA N	Aver. Second	Mov Tum Mov		Demand	Arrival	25	Aver Le	Level of A	Aver. Back Of Queue Prop	Of Queue I	į.	- ۳		Aver
		결종				Nel Ref) Maria			Cycles	tenth	2	- E 2	ALL NUMBER					[Veh.		5		Cydes o	
South: Campbell Hill Road	il Road											South: Campbell Hill Road	Al Hill Road											
1 L2 AII MCs	87	87 20		4.6	LOSA S	0.0	03	0.04	0.19	10.04	46.8		AI MCs 90	1.8		0.164		A SOL	0.0	0.3	0.04	0.20	0.04	46.8
		198	0 0.158			0.0	E.0	0.04	0.19	0.04	47.5	2 T1 AI	All MCs 198	2.0	198 2.0	0.164		LOSA	0.0	0.3	100	0.20	10.04	47.5
3 R2 AII MCs	=	=		10	LOSA	00	03	0.04	0.19	0.04	45.0	R2		20		0.164		LOSA	0.0	0.3	0.04	0.20	0.04	45.0
Approach	297 20		0 0.158	1.6	MA	0.0	6.0	0.04	0.19	10.04	47.2	Approach	307	19	61 105	0.164	1.7	NA	0.0	03	0.04	0.20	0.04	47.2
East: Arlewis Street												East Arlewis Street	freet											
4 L2 AII MCs				8.1	LOSA	0.2	1.1	0.55	0.99	650	36.8	12	All MCs	3 20	3 20	0.118	8.1	OSA	02	11	950	1 00	0.56	36.7
5 T1 AIIMCs	3 24 20	24 20	0 0.110		LOSA	0.2	11	0.55	0.99	0.55	26.3	5 T1 AII	AII MCs 27	1.8	27 1.8	0.118		LOSA	02	11	990	1.00	0.56	26.2
6 R2 AII MCs	72				LOSA	0.2	1.1	0.55	0.99	0.55	29.8	R	AI MCs 30	30 2.0	30 2.0	0.118	13.2	LOSA	0.2	1.1	0.56	1.00	0.56	7.62
Approach	57 2.0			12.0	LOSA	02	1.1	0.55	660	950	292	Approach	Ωí	19	61 65	0.118	122	LOSA	02	1.1	0.56	1.00	0.56	28.9
North: Campbell Hill Road	Il Road											North: Campbell Hill Road	II Hill Road											
7 L2 AI MCs	1			5.7		0.3	24	0.34	0.39	10.34	38.9	7 L2 AII	All MCs 18	20		0.191		ASO.	0.4	27	0.36	0.42	0.36	38.7
F						03	24	034	0.39	0.34	45.0	F	All MCs 154	20	154 2.0	0.191		LOSA	0.4	27	980	0.42	0.36	44.8
9 R2 AII MCs	121	121			3	0.3	24	0.34	6.39	0.34	35.1	9 R2 All	All MCs 13/	1.8	34 1.8	0.191		LOSA	0.4	27	96.0	0.42	0.36	34.6
Approach	293 2.0	293 20	0 0.181	3.1	NA	03	24	034	0.39	0.34	42.6	Approach	306	19	306 1.9	161.0	33	NA	0.4	27	036	0.42	0.36	42.2
West Curtis Road												West Curtis Road	pe											
10 L2 AII MCs	111				LOSA I	9.0	4.6	0.52	0.91	0.57	38.4	З	All MCs 124	1.9	24 1.9	0360	9.1	A SO	0.8	5.3	054	6.93	0.63	38.3
F	44	44 2.0				9.0	4.6	0.52	160	150	39.2	F	All MCs 48	1.8	48 1.8	0.360		LOS A	0.8	5.3	054	0.93	0.63	392
12 R2 AI MCs	28			13.4	LOSA	9.0	4.6	0.52	0.91	0.57	41.0	12 R2 AI	All MCs 87	1.9	87 1.9	0.360	14.1	LOSA	0.8	5.3	0.54	0.93	0.63	41.1
Approach	244 2.0		0 0.332	11.0	I LOSA	90	46	0.52	0.91	150	39.6	Approach	259	1.9	61 65	0.360	11.5	LOSA	0.8	5.3	0.54	0.93	0.63	39.6
All Vehicles	891 2.0	891 20	0 0.332	5.3	VN I	9.0	46	0.30	0.51	0.32	41.9	All Vehicles	156	1.9	61 166	096.0	56	NA	0.8	53	032	0.53	134	41.8

MOVEMENT SUMMARY - 5.00pm - 6.00pm (Evening) - Future Year 2034 - Curtis Road / Miller Road / S

τ	3
2	
a	ň
a	5
2	_
-	2

Post-Development

Pre-Development

	_																					
Aver Speed			43.9	42.5	38.7	41.0		44.0	45.9	43.6	43.9		40.4	43.7	44.3	42.9		44.4	43.1	43.9	43.8	42.5
Aver No. of	Cycles		0.25	0.25	0.26	0.25		0.34	0.34	0.34	0.34		0.37	0.37	0.37	0.37		0.52	0.52	0.62	0.52	0.31
텂볋	Rate		0.51	0.51	0.51	0.51		0.55	0.55	0.65	0.66		0.46	0.46	0.46	0.46		0.51	0.51	0.51	0.51	0.60
Prop.			0.25	0.25	0.25	0.25		0.34	0.34	0.34	0.34		0.37	0.37	0.37	0.37		0.52	0.52	0.52	0.52	0.31
Of Querk	Ξe		38	3.6	3.6	3.6		1.6	1.6	1.6	1.6		3.2	3.2	32	3.2		0.2	0.2	0.2	0.2	3.6
Aver Back Of Quese Prop. Oue	lej fe		0.5	9.0	9.0	0.5		0.2	0.2	0.2	0.2		0.4	0.4	0.4	0.4		0.0	0.0	0.0	0.0	0.6
Level of Service			LOSA	LOSA	LOSA	LOSA		LOSA	LOSA	LOSA	LOSA		LOS A	LOSA	LOSA	LOS A		LOS A	LOSA	LOSA	LOS A	LOSA
Awer L	X			3.4					4.0				4.2	4.0	8.1	42			55			52
Ceg			0.216	0.216	0.216	0.216		0.109	0.109	0.109	0.109		0.203	0.203	0.203	0.203		0.011	0.011	0.011	0.011	0.216
Ame	٤ň			20					1.1					20					15			19
2	트웨			0 112					8					0 136					un so			9 626
: Performance Denand Flows	21			112 2.0					8 1.7		1 021			136 2.0				4 2	5 15	1 2	10 11	628 1.9
ŧ.	<u> </u>	R		All MCs			p	All MCs	All MCs	ACs.		2	AI MCs		All MCs		pus	All MCs	AI MCs	NCs		
icle Moveme Turn Mov Class		Miller Road					Curtis Road			2 AI MCs		Miller Road					Oulgoa Bend		I AID	2 AII MCs		g
Vehicle Mov II		outh. M	1 12		æ	peoud	East Out	-	-	œ	pproact	orth: M	7 12	-	æ	pproact	West Ou	-	-	8	Approach	All Vahicles
a Aver of Speed	s km/h			23 425					33 46.0					35 43.7					51 425			30 42.4
Aver No of	Cycless		0.23	0.23	0.23	0.23		0.33	0.33	0.33	0.33		0.35	0.35	0.35	0.36		0.51	0.51	0.51	0.51	0.30
Stop No.d	Cycless		0.50 0.23	0.50 0.23	0.50 0.23	0.50 0.23		0.54 0.33	0.54 0.33	0.54 0.33	0.54 0.33		0.44 0.35	0.44 0.35	0.44 0.35	0.44 0.36		0.50 0.51	0.50 0.51	0.50 0.51	0.50 0.51	0.49 0.30
ePtop Ell Aver Oue Stop No of	Rate Cycles		023 050 023	023 050 023	023 050 023	0.23 0.50 0.23		0.33 0.54 0.33	0.33 0.54 0.33	033 054 033	0.33 0.54 0.33		0.35 0.44 0.35	0.35 0.44 0.35	0.35 0.44 0.35	0.35 0.44 0.36		051 050 051	051 0.50 0.51	051 050 051	0.51 0.50 0.51	030 049 030
Ol Queus Prup Ell. Aver Que Stop No. d	Diat Rato Cycles m		33 023 050 023	33 023 050 023	3.3 0.23 0.50 0.23	3.3 0.23 0.50 0.23		1.6 0.33 0.54 0.33	1.6 0.33 0.54 0.33	15 033 054 033	1.5 0.33 0.54 0.33		3.0 0.35 0.44 0.35	3.0 0.35 0.44 0.35	3.0 0.35 0.44 0.35	3.0 0.35 0.44 0.36		02 051 050 051	0.2 0.51 0.50 0.51	02 051 050 051	0.2 0.51 0.50 0.51	5 33 030 049 030
Ansr Back Of Queius Prup Ell Anna Oze Stop No of	Rate Cycles		0.5 3.3 0.23 0.50 0.23	0.5 3.3 0.23 0.50 0.23	0.5 3.3 0.23 0.50 0.23	05 33 023 050 023		0.2 1.5 0.33 0.54 0.33	0.2 1.5 0.33 0.54 0.33	02 15 033 054 033	0.2 1.5 0.33 0.54 0.33		0.4 3.0 0.35 0.44 0.35	0.4 3.0 0.35 0.44 0.35	0.4 3.0 0.35 0.44 0.35	0.4 3.0 0.35 0.44 0.35		00 02 051 0.50 0.51	0.0 0.2 0.51 0.50 0.51	0.0 0.2 0.51 0.50 0.51	0.0 0.2 0.51 0.50 0.51	05 33 030 049 030
Lovel of Aver Back Of Queue Prop EII Aver Service Oue Stop No. d	: [Viet. Dist] Ratio Cycless : vieth m		LOSA 0.5 33 0.23 0.50 0.23	LOSA 0.5 3.3 0.23 0.50 0.23	LOSA 0.5 3.3 0.23 0.50 0.23	LOSA 05 33 023 050 023		LOSA 0.2 1.5 0.33 0.54 0.33	LOSA 0.2 1.5 0.33 0.54 0.33	LOSA 02 15 033 054 033	LOSA 0.2 1.5 0.33 0.54 0.33		LOSA 0.4 3.0 0.35 0.44 0.35	LOSA 0.4 3.0 0.35 0.44 0.35	LOSA 0.4 3.0 0.35 0.44 0.35	LOSA 0.4 3.0 0.35 0.44 0.35		LOSA 0.0 0.2 0.51 0.50 0.51	LOSA 0.0 0.2 0.51 0.50 0.51	LOSA 0.0 0.2 0.51 0.50 0.51	LOSA 0.0 0.2 0.51 0.50 0.51	LOSA 05 33 030 049 030
Aver Levelof Aver Back Of Canate Prop. E.1. Aver Distry Service Care Stap. No. of	Diat Rato Cycles m		3.5 LOSA 0.5 3.3 0.23 0.50 0.23	33 LOSA 05 33 023 050 023	7.4 LOSA 05 3.3 023 050 023	55 LOSA 05 33 023 050 023		3.9 LOSA 0.2 1.5 0.33 0.54 0.33	3.8 LOSA 0.2 1.5 0.33 0.54 0.33	7.9 LOSA 0.2 1.5 0.33 0.54 0.33	59 LOSA 02 15 033 054 033		4.0 LOSA 0.4 3.0 0.35 0.44 0.35	3.9 LOSA 0.4 3.0 0.35 0.44 0.35	8.0 LOSA 0.4 3.0 0.35 0.44 0.35	4.0 LOSA 0.4 3.0 0.35 0.44 0.36		5.1 LOSA 0.0 0.2 0.51 0.50 0.51	5.1 LOSA 0.0 0.2 0.51 0.50 0.51	9.2 LOSA 0.0 0.2 0.51 0.50 0.51	5.7 LOSA 0.0 0.2 0.51 0.50 0.51	50 LOSA 05 33 030 049 030
Deg Aver Leveld Aver Rack Of Guene Prop ET Aver Sain Delay Service Over Back Of Guene Prop Kord	vic seec [Veh. Diat] Radio Cycles vic seec veh m		3.5 LOSA 0.5 3.3 0.23 0.50 0.23	0.202 3.3 LOSA 0.5 3.3 0.23 0.50 0.23	0.202 7.4 LOSA 05 33 023 050 023	LOSA 05 33 023 050 023		20 0.100 3.9 LOSA 0.2 1.5 0.33 0.54 0.33	20 0.100 3.8 LOSA 0.2 1.5 0.33 0.54 0.33	20 0.100 7.9 LOSA 0.2 1.5 0.33 0.54 0.33	2.0 0.100 5.9 LOSA 0.2 1.5 0.33 0.54 0.33		0.192 4.0 LOSA 0.4 3.0 0.35 0.44 0.35	2.0 0.192 3.9 LOSA 0.4 3.0 0.35 0.44 0.35	20 0.192 0.0 LOSA 0.4 3.0 0.35 0.44 0.35	LOSA 0.4 3.0 0.35 0.44 0.35		0.010 5.1 LOSA 0.0 0.2 0.51 0.50 0.51	20 0.010 5.1 LOSA 0.0 0.2 0.51 0.50 0.51	0.010 9.2 LOSA 0.0 0.2 0.51 0.50 0.51	LOSA 0.0 0.2 0.51 0.50 0.51	LOSA 05 33 030 049 030
Amial Dag Avar Loost of Aver Back Of Guense Prop. Eff. Aver Flows Sain Delay Service: Oze Stop No. of	TotalHV) (Veh Diat) Rate Cycles ethn % vic sec veh m		9 20 0.202 3.5 LOSA 0.5 3.3 0.23 0.50 0.23	112 20 0.202 3.3 LOSA 0.5 3.3 0.23 0.50 0.23	138 20 0.202 7.4 LOSA 0.5 3.3 0.23 0.50 0.23	259 20 0.202 5.5 LOS.A 0.5 33 0.23 0.50 0.23		49 20 0.100 3.9 LOSA 0.2 1.5 0.33 0.54 0.33	6 20 0.100 3.8 LOSA 0.2 1.5 0.33 0.54 0.33	54 20 0:100 7.9 LOSA 02 15 033 054 033	110 2.0 0.100 5.9 LOSA 0.2 1.5 0.33 0.54 0.33		73 20 0.192 4.0 LOSA 0.4 3.0 0.35 0.44 0.35	136 2.0 0.192 3.9 LOSA 0.4 3.0 0.35 0.44 0.35	5 2.0 0.192 8.0 LOSA 0.4 3.0 0.35 0.44 0.35	215 20 0.192 4.0 LOSA 0.4 3.0 0.35 0.44 0.36		4 20 0.010 5.1 LOSA 0.0 0.2 0.51 0.50 0.51	4 20 0.010 51 LOSA 0.0 0.2 0.51 0.50 0.51	1 2.0 0.010 9.2 LOSA 0.0 0.2 0.51 0.50 0.51	9 2.0 0.010 5.7 LOSA 0.0 0.2 0.51 0.50 0.51	592 20 0202 50 LOSA 05 33 030 049 030
Amial Dag Aver Levelof Aver Back Of Guene Prop. Ell. Aver Flows Sain Delay Service. Oze Stop No.of	TotalHV) (Veh Diat) Rate Cycles ethn % vic sec veh m		9 20 9 20 0 202 35 LOSA 05 33 023 050 023	112 20 112 20 0.202 3.3 LOSA 0.5 3.3 0.23 0.50 0.23	20 138 20 0.202 7.4 LOSA 0.5 33 0.23 0.50 0.23	20 0202 55 LOSA 05 33 023 050 023		20 0.100 3.9 LOSA 0.2 1.5 0.33 0.54 0.33	2.0 6 2.0 0.100 3.8 LOSA 0.2 1.5 0.33 0.54 0.33	20 0.100 7.9 LOSA 0.2 1.5 0.33 0.54 0.33	20 110 20 0.100 5.9 LOSA 0.2 1.5 0.33 0.54 0.33		73 20 73 20 0.192 4.0 LOSA 0.4 3.0 0.35 0.44 0.35	136 2.0 136 2.0 0.192 3.9 LOSA 0.4 3.0 0.35 0.44 0.35	5 2.0 0.192 8.0 LOSA 0.4 3.0 0.35 0.44 0.35	20 0.192 4.0 LOSA 0.4 3.0 0.35 0.44 0.36		4 20 0.010 5.1 LOSA 0.0 0.2 0.51 0.50 0.51	4 20 0.010 5.1 LOSA 0.0 0.2 0.51 0.50 0.51	1 2.0 0.010 9.2 LOSA 0.0 0.2 0.51 0.50 0.51	20 0.010 5.7 LOSA 0.0 0.2 0.51 0.50 0.51	20 0202 50 LOSA 05 33 030 049 030
Amial Dag Aver Levelof Aver Back Of Guene Prop. Ell. Aver Flows Sain Delay Service. Oze Stop No.of	TotalHV) (Veh Diat) Rate Cycles ethn % vic sec veh m	Road	a 9 20 9 20 0.202 3.5 LOSA 0.5 33 0.23 0.50 0.23	112 20 112 20 0.202 3.3 LOSA 0.5 3.3 0.23 0.50 0.23	20 138 20 0.202 7.4 LOSA 0.5 33 0.23 0.50 0.23	2.0 259 2.0 0.202 5.5 LOSA 0.5 33 0.23 0.50 0.23	Road	49 2.0 49 2.0 0.100 3.9 LOSA 0.2 1.5 0.33 0.54 0.33	6 2.0 6 2.0 0.100 3.8 LOSA 0.2 1.5 0.33 0.54 0.33	54 20 54 20 0,100 7.9 LOSA 0.2 1.5 0.33 0.54 0.33	20 110 20 0.100 5.9 LOSA 0.2 1.5 0.33 0.54 0.33	Road	1 73 2.0 73 2.0 0.192 4.0 LOSA 0.4 3.0 0.35 0.44 0.35	1 136 2.0 136 2.0 0.192 3.9 LOSA 0.4 3.0 0.35 0.44 0.35	1 5 2.0 5 2.0 0.192 0.0 LOSA 0.4 3.0 0.35 0.44 0.35	Z15 Z0 Z15 Z0 0.192 4.0 LOSA 0.4 3.0 0.35 0.44 0.36	a Bend	4 20 4 20 0010 51 LOSA 00 02 051 050 051	4 20 4 20 0.010 5.1 LOSA 0.0 0.2 0.51 0.50 0.51	1 2.0 0.010 9.2 LOSA 0.0 0.2 0.51 0.50 0.51	20 9 20 0.010 5.7 LOSA 0.0 0.2 0.51 0.50 0.51	20 592 20 0.202 50 LOSA 05 33 030 0.49 030
ce Armai Deg Aver Levelof Aver Back Of Cuence Pup Ell Aver Frews Sain Delay Service Oue Stop Nord	TotalHV) (Veh Diat) Rate Cycles ethn % vic sec veh m	South: Miller Road	a 9 20 9 20 0.202 3.5 LOSA 0.5 33 0.23 0.50 0.23	AIMCs 112 2.0 112 2.0 0.202 3.3 LOSA 0.5 3.3 0.23 0.50 0.23	AIMCs 138 2.0 138 2.0 0.202 7.4 LOSA 0.5 3.3 0.23 0.50 0.23	259 20 259 20 0202 55 LOSA 05 33 023 050 023	East Curts Road	AI MCs 49 20 49 20 0.100 3.9 LOS A 0.2 1.5 0.33 0.54 0.33	AIMOS 6 2.0 6 2.0 0.100 3.8 LOSA 0.2 1.5 0.33 0.54 0.33	AIMO8 54 20 54 20 0,100 7.9 LOSA 0.2 1.5 0.33 0.54 0.33	110 20 110 20 0.100 5.9 LOSA 0.2 1.5 0.33 0.54 0.33	North: Miller Road	1 73 2.0 73 2.0 0.192 4.0 LOSA 0.4 3.0 0.35 0.44 0.35	1 136 2.0 136 2.0 0.192 3.9 LOSA 0.4 3.0 0.35 0.44 0.35	1 5 2.0 5 2.0 0.192 0.0 LOSA 0.4 3.0 0.35 0.44 0.35	Z15 Z0 Z15 Z0 0.192 4.0 LOSA 0.4 3.0 0.35 0.44 0.36	West Oulgoa Bend	4 20 4 20 0010 51 LOSA 00 02 051 050 051	AIMCs 4 20 4 20 0.010 5.1 LOSA 0.0 0.2 0.51 0.50 0.51	1 2 0 1 2 0 0.010 9.2 LOSA 0.0 0.2 0.51 0.50 0.51	20 9 20 0.010 5.7 LOSA 0.0 0.2 0.51 0.50 0.51	20 592 20 0.202 50 LOSA 05 33 030 0.49 030

MOVEMENT SUMMARY – 5.00pm – 6.00pm (Evening) – Future Year 2034 – Curtis Road / Campbell Hill Road / Arlewis Street

				Pre	Q.	sveld	Pre-Developme	ent										а.	ost	-De	/elo	Post-Development	ant				
Vehic	Vehicle Movement Performance	t Perform.	ance											Vehicle	hicle Movement Performance	ent Peri	ormanc										
м Ма	Tum Mov Class	Denund Flows [Total HV] velvh %	L Aniva L Flower [[Total Inv velvith 3		≺a - Ras	Aver Levelof Delay Service sec	id Aver Bac ce IVen veh		A Of Queue Prop Det] m		Eff. Aver Stop No of Farte Oydes	at Aver of Speed kmh	- T - E	19	Tum Mov Classe		Flows Flows MHV][7	Amval Flows Cotal HV]		Aver	Level of Service		Aver Back Of Queue Prop Que [Veh Dist] veh m	ione Proj Dou	E gg alle	Aver No. of Cycles	Aver Speed km/h
South	South: Campbell Hill Road	Road												South: C	Campbell Hill Road	Hill Road											
-	L2 AI MCs						SA 0.1							-	L2 AI MCs		3 1.8	53 1.8	0.078				0.4			0.10	
2	T1 AII MCs		12						04 0	0 10 0.	0.28 0.10			2 TI		Cs 72		72 20	0.076	0.1	LOSA	0.1	0.4				46.3
3 R2	R2 AII MCs		18			5.1 LOSA	SA 0.1							9	R2 AI MOs		8 20		0.078				0.4	0.10	0 0.29	0.10	
Appro	ach	138 2.0	138	2.0 0.0	0.075		NA 0				0.28 0.10	10 45.6		Approa	5	143	61 6	143 19	0.078				0.4			0.10	
East	East Arlewis Street													East Ar	Arlewis Street	1											
4	L2 AII MCs	1 2.0	-	2.0 0.0	0.050	8.0 LOSA	5A 0.1				0.94 0.45				L2 AI MCs		1 20	1 20	0.056	8.0	LOSA		0.6				
u.	T1 AII MCs				0.050	9.8 LOSA	SA 0.1		0.5 0.	0.48 0			6		TI AIMCS		5 17			10.1		0.1	05			0.50	27.9
9	R2 AII MCs	16 2.0	16	2.0	0.050 1	H3 LOSA	SA 0.1				0.94 0.48	48 31.1	+	9	R2 AI MCa	Ca 16		16 20	0.056	11.7			0.5				
Approach	ach	30 2.0	R	2.0	0.050 1	10.5 LOSA				0.48 0.5	94 0.48	48 30.5	5	Approach	-5	N	3 1.8		0.056	10.8	LOSA		0.5		0 0.96	09.0	
North	North: Campbell Hill Road	Road												North: C	Campbell Hill Road	HI Road											
1	L2 AII MOs		20	20 01		5.0 LOSA						23 38.9	0		L2 AIMCs	Cs 20	0 2 0	20 20	0.188	50	LOSA		2.7	0.24	4 0.36	0.24	
8	TI AIIMCS		128	2.0 0.1	0.176	0.3 LOSA				0.23 0.	0.35 0.23		6		TI AIMOS	Nos 128	50	120 20	0.186	0.4	LOSA		21		4 0.36	0.24	
σ	R2 AII MC8	155	155			5.0 LOSA	SA 0.3		25 0.				0	6			1.8	173 1.8				0.4	27				34.6
Approach	ach	303 2.0	303	2.0 0.1	0.176	30	NA 0.			0.23 0.	0.35 0.23	23 41.8	8	Approach	f	21	61 1	321 1.9	0.188	32	NA		23	0.24	4 0.36	0.24	
West	West Curtis Road													West C	Ourtis Road												
10	L2 AII MCs	123 2.0	123 2.0		0.192	7.8 LOSA	SA 0.3				0.88 0.27	27 39.7	1	10	L2 AI MCs	ICs 133		133 1.8	0.210	1.9			2.6				
11	T1 AII MCs				0.192 1	10.3 LOSA	5A 0.3				0.88 0.2	27 40.5	10		TI AIMOS			43 19					26				
12	R2 AII MCs	28 2.0	28 2.0		0.192 1	10.8 LOSA	5A 03		23 0.	0.27 0.	0.88 0.27	27 42.1	-1			No. 30		30 1.8		11.2	LOSA	0.4	2.6	0.28		0.28	42.5
Approach	ach.	191 2.0	191	20 0.1	0.192	8.8 LOSA	5A 03			0.27 0	0.88 0.27	27 40.3	3	Approach	f	202	61.9	Z06 1.9		8.9			26		8 0.88		
All Vehicles	hides	662 2.0	662 20		0.192	4.9 %	NA 0.3		25 0.	023 0.51	51 0.23	23 41.5	40	All Vehicles	des	202	13	702 1.9	0.210	5.1	AN	0.4	27	0.24	4 0.53	0.24	41.4